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Abstract-Here we show that the class of monoid recognizable l-fuzzy languages is closed under Boolean 

operations. Also we prove that the syntactic monoid of a recognizable l-fuzzy language is finite and every finite 

monoid is a syntactic monoid of a recognizable l-fuzzy language. 

 

Index Terms: l-fuzzy languages; Syntactic congruence; Syntactic monoid. 

 

1. INTRODUCTION 

Zadeh [12] introduced the notion of a fuzzy subset of 

an ordinary set as a method of representing 

uncertainty. Later it came as a useful tool for 

describing real-life problems.  Zadeh and Lee [6] 

generalized the classical notion of languages to the 

concept of fuzzy languages in 1969. A detailed 

account of the latest developments in the theory of 

automata and fuzzy languages was given in [7]. In [8] 

Petkovic introduced the notion of syntactic monoid of 

a fuzzy language and proved that every finite monoid 

is the syntactic monoid of a recognizable fuzzy 

language. 

In this paper we discussed monoid recognizability 

of l-fuzzy languages. We introduce the concept of 

syntactic monoid of a l-fuzzy language and studied its 

properties. Also we prove that every finite monoid is a 

syntactic monoid of a recognizable l-fuzzy language. 

 

2. PRELIMINARIES 

In this section we recall the basic definitions, 

results and notations that will be used in the sequel. 

All undefined terms are as in [7, 9]. A lattice is a 

partially ordered set in which every subset {a, b} 

consisting of two element has a least upper bound 

(a∨b) and a greatest lower bound (a∧b). A lattice l is 

said to be bounded if it has a greatest element 1 and a 

least element 0. A lattice l  is said to be distributive if 

for any element a, b and c of  l, we have the following 

distributive properties. 

(1)   a ∧ (b ∨c) = (a ∧b) ∨(a c). 

(2)   a ∨ (b ∧c) = (a ∨b) ∧ (a∨c). 

 

          Let l be a bounded lattice with greatest element 

1 and least element 0 and let a ∈l. An element b ∈ l  is 

 

 

 

 

 

 

called  complement of  a  if  a ∨b = 1 and   a ∧ b  =  0. 

Complements need not be unique. But if l is a 

bounded distributive lattice then complements are 

unique if they exist (cf. [10]). A lattice l is called 

complemented if it is bounded and if every element in 

l has a complement. A lattice l is called a complete 

lattice if every nonempty subset of l has greatest lower 

bound and least upper bound in l. Thus every finite 

lattice is complete. 

A semigroup consists of a nonempty set M on 

which an associative binary operation · is defined and 

is denoted by (M ,·). If there exists an element 1 

satisfying m · 1 = m = 1 · m for all m ∈M, then M is 

called a monoid (semigroup with identity). Let (M,·) 

be a monoid, then a nonempty subset M1 of M is called 

a submonoid of M if it is closed with respect to the 

induced binary operation. 

Let A be a nonempty finite set called an alphabet. 

Elements of A are called letters. A finite sequence of 

letters of A is called a word. The length of the word w, 

in symbols | w |, is the number of letters of A occurring 

in w. A word of length zero is called empty word and 

is denoted by ε.   denotes the set of all nonempty 

words over an alphabet A and    =    {ε} is a 

monoid under the operation  concatenation, called free 

monoid over A. A subset of   is called the language L 

over an alphabet A. 

Let     . Then L is recognizable if there exists 

a finite monoid M and a homomorphism         

such that          , where      . Also we say 

that M  recognizes L. 

Let      . For     ∈   ,we define a relation    

by  

      if     ∈      ∈  , 

 

for all     ∈    . Then    is a congruence,called the 

syntactic congruence. The quotient monoid       = 

M(L) is called the syntactic monoid and the canonical 

homomorphism    :         is called the syntactic 

morphism of  L. 
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3. l-FUZZY LANGUAGES 

Let l be a complete complemented distributive 

lattice.  

Any function λ from    into l is called a l-

fuzzylanguage over the alphabet A. 

Example3.1. Let l = ({{c},{d},{c,d},  }, ,∩) and let 

A = {a,b} be a complete complemented distributive 

lattice on the set {c,d}. The function  λ :  → l defined 

by 

      ={
{ }     ∈    

{ }    ∈         

is a l-fuzzy language over A. 

Definition 3.2. Let λ be a l-fuzzy language over an 

alphabet A.  Then λ is recognizable if there exist a 

finite monoid M, a homomorphism φ :  → M and a   

l-fuzzy subset π : M → l such that λ = πφ
−1 

where 

πφ
−1

(u) = π(φ(u)), u ∈  .We also say that the monoid 

M recognizes λ by a morphism φ. 

Example 3.3. χA is a recognizable l-fuzzy language. 

Now we define the complement     ̅̅ ̅of a l-fuzzy 

language λ as 

 ̅(u) =     ̅̅ ̅̅ ̅̅  

where     ̅̅ ̅̅ ̅̅ denotes the complement of λ(u) in l. 

For l-fuzzy languages λ1  , λ2 over A,   their 

join(∨) and meet (∧) are defined by        

         (λ1 ∨λ2)(u) = λ1(u) ∨λ2(u) 

and 

(λ1 ∧λ2)(u) = λ1(u) ∧λ2(u). 

Theorem 3.4. Let λ, λ1, λ2 be recognizable l-fuzzy 

languages over an alphabet A. Then we have the 

following 

(1) λ1 ∨λ2 is recognizable. 

(2) λ1 ∧λ2 is recognizable. 

(3)  ̅ is recognizable. 

 

Proof. (1) Since λ1 and λ2 are recognizable, there exist 

finite monoids M1 and M2, homomorphisms φ1 : 
 → 

M1 and φ2 :  
 → M2 and l-fuzzy subsets π1 : M1 → l 

and     π2 : M2 → l such that        
   and    

    
  . Define a map θ :  →M1 × M2by 

θ(u) = (φ1(u), φ2(u)). 

For           ∈      We have 

 

 

So θ is a homomorphism. Define π :M1 × M2 → l by 

π(m1,m2) = π1(m1) ∨π2(m2). 

So πθ
−1 

= λ1 ∨λ2.Hence λ1 ∨λ2 is recognized by  

M1 × M2. 

(ii) (2) The map ϕ :M1 × M2 → l defined by 

ϕ(m1,m2) = π1(m1) ∧π2(m2) 

is well defined. So ϕ is a l-fuzzy subset of M1 × M2. 

Thus 

for all u ∈  . Hence λ1 ∧λ2 = ϕθ
−1

. Therefore M1 × M2 

recognizes  λ1 ∧λ2. 

(3)Since λ is recognizable, there exist a finite monoid 

M, an onto homomorphism φ :  → M and a l-fuzzy 

subset π on M such that λ = πφ
−1 

where λ(u) = πφ
−1

)(u) 

= π(φ(u)). Define    from M to l by 

           

Then    
                  (    ) 

                                     =      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

                       =         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=      ̅̅ ̅̅ ̅̅  

                             =   ̅(u)         

for all u ∈  . Therefore    
   =   ̅̅̅. Thus  ̅ is a 

recognizable language. 

The class of all recognizable l-fuzzy languages 

over A is denoted by lF(  ). By Example 3.3, we have 

   ∈       . Thus lF(  ) is a nonempty subclass of 

the class of all l-fuzzy languages. From Theorem 3.4, 

 (u1u2) = (φ1(u1u2), φ2(u1u2)) 

 = (φ1(u1)φ1(u2), φ2(u1)φ2(u2)) 

 = (φ1(u1),φ2(u1))(φ1(u2),φ2(u2)) 

 =  (u1)  u2). 

 

πθ
−1

(u) = π(θ(u)) = π((φ1(u),φ2(u))) 

 = π1(φ1(u)) ∨π2(φ2(u)) 

 
= 

    
           

      

 = λ1(u) ∨λ2(u) = (λ1 ∨λ2)(u). 

Since π is well defined, π is a l-fuzzy subset of  

M1 × M2. 

For u ∈  , we have 

  

        = ϕ(θ(u)) 

 
= ϕ((φ1(u),φ2(u))) 

 = π1(φ1(u)) ∧π2(φ2(u)) 

 
= 

    
     ∧     

      

 = λ1(u) ∧λ2(u) = (λ1 ∧λ2)(u), 
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it follows that lF(  ) is closed under join(∨), meet(∧) 

and complementation. Moreover, we have the 

following. 

Corollary 3.5. lF(  ) is a Boolean Algebra. 

The following theorem gives a necessary and 

sufficient condition for the recognizability of l-fuzzy 

languages. 

 

Theorem 3.6. Let λ be a l-fuzzy language over an 

alphabet A. Then a monoid M recognizes λ by a 

homomorphism φ :  → M if and only if kerφ saturates 

λ. 

 

Proof. Assume that the monoid M recognizes λ by a 

homomorphism φ :  → M. Then there exists a l-fuzzy 

subset π of M such that λ = πφ
−1  

where λ(u) = (πφ
−1

)(u) 

= π(φ(u)), u ∈  . Let u and v belongs to   . Then (u,v) 

∈kerφ if and only if φ(u) = φ(v). Thus π(φ(u)) = 

π(φ(v)). That is, πφ
−1

(u) = πφ
−1

(v). Hence λ(u) = λ(v). 

Therefore kerφ  saturates  λ. 

Conversely assume that φ :  → M is a 

homomorphism and kerφ saturates λ. 

Define a function π :φ(  ) → l by 

π(φ(u)) = λ(u),    u∈   

If φ(u) = φ(v), then (u,v) ∈ kerφ. Since kerφ saturates 

λ, we have λ(u) = λ(v). So π is well defined. Let π1 : M 

→ l be a function such that π1          Then ,  for 

all u ∈    we have   (π1φ)(u) = π1(φ(u)) = π(φ(u)) = 

λ(u).  So λ = π1φ
−1

.  Thus M recognizes λ.  

4. SYNTACTIC CONGRUENCE 

Let λ be a l-fuzzy language over A. Define a relation 

(∼λ) on   as follows: 

For u, v∈A ,  u∼λ v  if and only if    

 λ(puq) = λ(pvq),for all p, q∈  . 
Then the relation ∼λ is a congruence on    called 

syntactic congruence of λ. The quotient monoid 

  /∼λ= Syn(λ) is called syntactic monoid of λ. The 

assignment u → [u]∼λ  defines a homomorphism 

  :  → Syn(λ) called the syntactic homomorphism of 

   
Let u, v ∈  and let (u,v) ∈ker(  ). Then    u) =   (v). 

That is, [u]∼λ = [v]∼λ. So (u,v)∈∼λ. Then by the 

definition of ∼λ  ,λ(u) = λ(v). Thus, Syn(λ) recognizes 

λ, by Theorem 3.6. 

Theorem 4.1. Let λ be a l-fuzzy language over A. 

Then a monoid M recognizes λ if and only if Syn(λ) 

divides M. 

Proof. Assume that the monoid M recognizes λ. Then 

there exist a homomorphism φ :  → M and a l-fuzzy 

subset π of M such that λ = πφ
−1 

where λ(u) = π(φ(u)),u 

∈  . Define a map ψ from φ(  ) to Syn(λ) by ψ(φ(u)) 

= [u]∼λ. Let u, v∈  and let φ(u) = φ(v). Then (u,v) ∈ 
kerφ. By Theorem 3.6, we have λ(u) = λ(v). So [u]∼λ = 

[v]∼λ. That  is, ψ(φ(u)) = ψ(φ(v)), u,v∈  . Thus ψ is 

well defined. Also, we have 

for all u, v ∈    

Clearly φ(ε) is the identity in φ(  ), where ε is the 

empty word. Then ψ[φ(ε)] = [ε]∼λ which is the identity 

in Syn(λ). Thus ψ is a homomorphism from φ(  ) into 

Syn(λ). Since φ(  ) is a submonoid of M, we see that 

Syn(λ) divides M.  

Conversely assume that Syn(λ) divides a monoid 

M. We show that M recognizes λ. Since Syn(λ) divides 

M, there exist a submonoid M1 of M and an onto 

homomorphism ψ from M1 to Syn(λ). Define a map µ: 

A → M1 by µ(u) = m if    u) = ψ(m), for all u ∈  and 

m ∈M1. Let u1 ,u2 ∈  and let µ(u1) = m1 and µ(u2) = 

m2. Let u1 = u2, then   (u1) =   (u2). Thus  µ(u1) = 

µ(u2). Hence µ is well defined. We have,  

  (u1u2) =    (u1)  (u2) 

 =  ψ(m1)ψ(m2)  

 =  ψ(m1m2). 

Thus µ(u1u2) = m1m2 = µ(u1)µ(u2). Hence µ is a 

homomorphism from   → M1 and   =  µ. Since M1 

is a submonoid of M, there exists a homomorphism φ 

:  → M. 

Since Syn(λ) recognizes λ, there exists a l-fuzzy 

subset   of Syn(λ) such that λ =     
−1 

where λ(u) 

=  (  (u)). Define a map π from M to l by π(m) = 

(  ψ
−1

)(u) where    ψ
−1

)(u) =  (ψ(u)), if m ∈M1. If  

m ∈M \ M1, then π is defined arbitrarily. Since ψ and 

   are well defined, π is well defined. For u ∈    we 

have 

    (u)        (    )       
          

                              (ψ(φ(u))) =  (ψ(µ(u))                           

                                 (  (u))     

                                     
−1

)(u)         

Thus λ = πφ
−1

. Hence λ is recognizable. 

 

Corollary 4.2. Syntactic monoid Syn(λ) is the minimal 

monoid recognizing the fuzzy language λ. 

 

It is well known that every monoid is the syntactic 

monoid of a fuzzy language (cf, [8]). Now we prove 

the case for l-fuzzy languages. 

 

Theorem 4.3. For every monoid M with |M| ≤ |l|, there 

exist a l-fuzzy language λ such that M is the syntactic 

monoid of λ. 

 

Proof. Let M be a monoid. Then there exist an 

alphabet A and an epimorphism φ :  → M. Since kerφ 

is a congruence on   , kerφ partitions   into different 

equivalence classes (languages). Let {Li}i∈I be 

       ψ(φ(u)φ(v)) = ψ(φ(uv)) = [uv]∼λ 

 = [u]∼λ[v]∼λ 

 = ψ(φ(u))ψ(φ(v)), 
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languages in the partition determined by kerφ. Let 

{li}i∈I be pairwise distinct elements of the lattice l. 

Define a l-fuzzy language λ :  → l by 

λ(u) = li , if u ∈Li 

A map ϕ :Syn(λ) → M is defined by ϕ(  (u)) = φ(u), u 

∈ A . Let u,v∈  and   (u) =   (v). Then (u,v) ∈∼λ. So 

λ(u) = λ(v). Thus uand v  belongs to some Li. That is, 

(u,v) ∈ kerφ. Hence we get, φ(u) = φ(v). Therefore ϕ is 

well defined.  We have 

Alsoϕ(  (u)) = ϕ(  (v)) if and only if φ(u) =φ(v). So 

(u,v) ∈ kerφ. Hence  (u,v) ∈Li for some i∈I. Thus λ(u) 

= λ(v). So (u,v) ∈∼λ. That is, [u]∼λ = [v]∼λ. Hence ϕ is 

one to one. 

Let m ∈M. Since φ is onto, there exists some u 

∈  such that φ(u)= m. So ϕ(  (u)) = φ(u) = m. Thus ϕ 

is an isomorphism from Syn(λ ) onto M.  

 

Example 4.4. Let l = ({ ,{c},{d},{c,d}},∩, ) be the 

complete complemented distributive lattice and the 

monoid be M = (Z3,+3). Here |M| <|l|. Let A = 

{a,b}.Then there exists a l-fuzzy language λ :  → l 

defined by                                   

    = {

              
{ }              

{ }               
 

Here Syn                        . 

 

        The following theorem presents the Myhill-

Nerode theorem for l-fuzzy languages. 

 

Theorem 4.5. Let λ be a l-fuzzy language over an 

alphabet A. Then the following statements are 

equivalent  

(1) λ is recognizable. 

(2) ∼λ has finite index. 

 

 

 

Proof. (1) Assume that λ is recognizable. So λ is 

recognized by a finite monoid M. Then by Theorem 

4.1, Syn(λ) divides M. That is, Syn(λ) is a 

homomorphic image of a submonoid of M. Thus 

Syn(λ) is finite. Hence ∼λ has finite index. 

(2) Assume that ∼λ has finite index. So Syn(λ) is finite. 

Define a map  :Syn(λ) → l by    (  (u)) = λ(u),u∈A . 

Let      ∈   , and      ) =      ). Then    ]∼λ = 

[  ]∼λ. Thus   ∼λ   . Hence λ(   ) = λ    . Thus   is 

well defined and λ(u) =   (  (u)) = (    
−1

)(u) for all 

u ∈  . Thus λ =     
−1 

and Syn(λ) recognizes λ by the 

syntactic homomorphism. Therefore λ is recognizable. 

 

REFERENCES 

 

[1] S.Eilenberge, Automata, Languages and 

Machines,Vol. A, Academic Press, London 

1974. 

[2] S.Eilenberge, Automata, Languages and 

Machines,Vol. B, Academic Press, London 

1976. 

[3] G.Gratzer, Lattice Theory; Foundation, 

Springer Basel AG, 2011. 

[4]  J. M. Howie, Fundamentals of Semigroup 

Theory,  Clarendon Press, Oxford 1976. 

[5] G. Lallement, Semigroup and Combinatorial 

Applications, John Wiley, NewYork, 1979.                      

[6]  E. T. Lee, Note on Fuzzy Languages, 

Information Science, No. 1, 1969, 421–434. 

[7]  J. N. Mordeson and D. S. Malik, Fuzzy 

Automata and Languages; Theory 

andApplications, Chapman & Hall CRC, 

2002 

[8] T.Petkovic, Varieties of Fuzzy Languages, 

Proc. 1st Inernational Conference on 

Algebraic Informatics, Aristotle University of 

Thessaloniki, Thessaloniki, 2005. 

[9] J. E. Pin, Varieties of Formal Languages, 

North Oxford Academic, 1986. 

[10] Rakesh dube, Adesh Pandey, Retu Gupta, 

Discrete Structures and Automata Theory, 

Narosa Publishing House, New Delhi, 2007. 

[11] W.G.Wie, On Generalisation of Adaptive 

Algorithms and Applications of the Fuzzy 

sets concepts f pattern classification, Ph.D 

Thesis, Indiana 1967. 

[12] L. A. Zadeh, Fuzzy Sets, Information and 

Control, No. 8, 1965, 338–353. 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

                         

                           

                                        

                                              (     ) (     ) 


