On Monoid Recognizable l-Fuzzy Languages

Ajitha Kumari K^{1}, Archana V P^{2}
Department of Mathematics, B.J.M.Govt: College, Chavara, Kollam. 691583^{1}, Department of Mathematics, M.M.N.S.S. College, Kottiyam ${ }^{2}$
Email:ambiliragamalika@gmail.com ${ }^{1}$, rajesharchana@gmail.com ${ }^{2}$

Abstract

Here we show that the class of monoid recognizable l-fuzzy languages is closed under Boolean operations. Also we prove that the syntactic monoid of a recognizable l-fuzzy language is finite and every finite monoid is a syntactic monoid of a recognizable l-fuzzy language.

Index Terms: l-fuzzy languages; Syntactic congruence; Syntactic monoid.

1. INTRODUCTION

Zadeh [12] introduced the notion of a fuzzy subset of an ordinary set as a method of representing uncertainty. Later it came as a useful tool for describing real-life problems. Zadeh and Lee [6] generalized the classical notion of languages to the concept of fuzzy languages in 1969. A detailed account of the latest developments in the theory of automata and fuzzy languages was given in [7]. In [8] Petkovic introduced the notion of syntactic monoid of a fuzzy language and proved that every finite monoid is the syntactic monoid of a recognizable fuzzy language.

In this paper we discussed monoid recognizability of l-fuzzy languages. We introduce the concept of syntactic monoid of a l-fuzzy language and studied its properties. Also we prove that every finite monoid is a syntactic monoid of a recognizable l-fuzzy language.

2. PRELIMINARIES

In this section we recall the basic definitions, results and notations that will be used in the sequel. All undefined terms are as in [7, 9]. A lattice is a partially ordered set in which every subset $\{a, b\}$ consisting of two element has a least upper bound $(a \vee b)$ and a greatest lower bound $(a \wedge b)$. A lattice l is said to be bounded if it has a greatest element 1 and a least element 0 . A lattice l is said to be distributive if for any element a, b and c of l, we have the following distributive properties.
(1) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
(2) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

Let l be a bounded lattice with greatest element 1 and least element 0 and let $a \in l$. An element $b \in l$ is
called complement of a if $a \vee b=1$ and $a \wedge b=0$. Complements need not be unique. But if l is a bounded distributive lattice then complements are unique if they exist (cf. [10]). A lattice l is called complemented if it is bounded and if every element in l has a complement. A lattice l is called a complete lattice if every nonempty subset of l has greatest lower bound and least upper bound in l. Thus every finite lattice is complete.

A semigroup consists of a nonempty set M on which an associative binary operation - is defined and is denoted by (M, \cdot). If there exists an element 1 satisfying $m \cdot 1=m=1 \cdot m$ for all $m \in M$, then M is called a monoid (semigroup with identity). Let (M, \cdot) be a monoid, then a nonempty subset M_{1} of M is called a submonoid of M if it is closed with respect to the induced binary operation.

Let A be a nonempty finite set called an alphabet. Elements of A are called letters. A finite sequence of letters of A is called a word. The length of the word w, in symbols $|w|$, is the number of letters of A occurring in w. A word of length zero is called empty word and is denoted by ε. A^{+}denotes the set of all nonempty words over an alphabet A and $A^{*}=A^{+} \cup\{\varepsilon\}$ is a monoid under the operation concatenation, called free monoid over A. A subset of A^{*} is called the language L over an alphabet A.

Let $L \subseteq A^{*}$. Then L is recognizable if there exists a finite monoid M and a homomorphism $\phi: A^{*} \rightarrow M$ such that $L=\phi^{-1}(P)$, where $P \subseteq M$. Also we say that M recognizes L.

Let $L \subseteq A^{*}$. For $u, v \in A^{*}$, we define a relation P_{L} by

$$
u P_{L} v \text { if } x u y \in L \Leftrightarrow x v y \in L,
$$

for all $x, y \in A^{*}$. Then P_{L} is a congruence, called the syntactic congruence. The quotient monoid $A^{*} / P_{L}=$ $M(L)$ is called the syntactic monoid and the canonical homomorphism $\eta_{L}: \underline{A^{*} \rightarrow M(L)}$ is called the syntactic morphism of L.

3. l-FUZZY LANGUAGES

Let l be a complete complemented distributive lattice.
Any function λ from A^{*} into l is called a l fuzzylanguage over the alphabet A.

Example3.1. Let $l=(\{\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\}, \varnothing\}, \mathrm{U}, \cap)$ and let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ be a complete complemented distributive lattice on the set $\{\mathrm{c}, \mathrm{d}\}$. The function $\lambda: \boldsymbol{A}^{*} \rightarrow l$ defined by
$\lambda(u)=\left\{\begin{array}{lll}\{c\} & \text { if } & u \in a A^{*} \\ \{d\} & \text { if } & u \in b A^{*}\end{array}\right.$
is a l-fuzzy language over A.
(ii)

Definition 3.2. Let λ be a l-fuzzy language over an alphabet A. Then λ is recognizable if there exist a finite monoid M, a homomorphism $\varphi: A^{*} \rightarrow M$ and a l-fuzzy subset $\pi: M \rightarrow l$ such that $\lambda=\pi \varphi^{-1}$ where $\pi \varphi^{-1}(u)=\pi(\varphi(u)), u \in A^{*}$. We also say that the monoid M recognizes λ by a morphism φ.

Example 3.3. $\chi_{A} *$ is a recognizable l-fuzzy language.
Now we define the complement $\bar{\lambda}$ of a l-fuzzy language λ as

$$
\bar{\lambda}(\mathrm{u})=\overline{\lambda(u)}
$$

where $\overline{\lambda(u)}$ denotes the complement of $\lambda(u)$ in l.
For l-fuzzy languages λ_{1}, λ_{2} over A, their join (V) and meet (\wedge) are defined by

$$
\begin{aligned}
\left(\lambda_{1} \vee \lambda_{2}\right)(u) & =\lambda_{1}(u) \vee \lambda_{2}(u) \\
& \text { and } \\
\left(\lambda_{1} \wedge \lambda_{2}\right)(u) & =\lambda_{1}(u) \wedge \lambda_{2}(u) .
\end{aligned}
$$

Theorem 3.4. Let $\lambda, \lambda_{1}, \lambda_{2}$ be recognizable l-fuzzy languages over an alphabet A. Then we have the following
(1) $\lambda_{1} \vee \lambda_{2}$ is recognizable.
(2) $\lambda_{1} \wedge \lambda_{2}$ is recognizable.
(3) $\bar{\lambda}$ is recognizable.

Proof. (1) Since λ_{1} and λ_{2} are recognizable, there exist finite monoids M_{1} and M_{2}, homomorphisms $\varphi_{1}: A^{*} \rightarrow$ M_{1} and $\varphi_{2}: A^{*} \rightarrow M_{2}$ and l-fuzzy subsets $\pi_{1}: M_{1} \rightarrow l$ and $\quad \pi_{2}: M_{2} \rightarrow l$ such that $\lambda_{1}=\pi_{1} \varphi_{1}^{-1}$ and $\lambda_{2}=$ $\pi_{2} \varphi_{2}{ }^{-1}$. Define a map $\theta: A^{*} \rightarrow M_{1} \times M_{2}$ by

$$
\theta(u)=\left(\varphi_{1}(u), \varphi_{2}(u)\right) .
$$

For $u_{1}, u_{2} \in A^{*}$, We have

So θ is a homomorphism. Define $\pi: M_{1} \times M_{2} \rightarrow l$ by $\pi\left(m_{1}, m_{2}\right)=\pi_{1}\left(m_{1}\right) \vee \pi_{2}\left(m_{2}\right)$.
$\underset{\theta}{\text { Since }} \pi$ is well defined, $\underset{=}{\pi}\left(\varphi_{1}\right.$ is a $\left.l_{1} u_{1} u_{2}\right), \varphi_{2}\left(\varphi_{2}\left(u_{1} u_{2}\right)\right)$ sut of

$$
\begin{aligned}
& \begin{aligned}
&\left.A_{1} u_{1} u_{2}\right)_{2} . \\
& \text { For } u \in A^{*}, \text { we have }=\left(\varphi_{1}\left(u_{1} u_{1}\right), \varphi_{1}\left(u_{2}\right), \varphi_{2}\left(u_{1}\right) \varphi_{2}\left(u_{2}\right)\right) \\
&=\left(\varphi_{1}\left(u_{1}\right), \varphi_{2}\left(u_{1}\right)\right)\left(\varphi_{1}\left(u_{2}\right), \varphi_{2}\left(u_{2}\right)\right) \\
& \pi \theta^{-1}(u)=\left.\left.\left.\pi(\notin(u)) \theta \neq \neq u_{1}\right) \theta \theta\left(u\left(u_{2}\right)\right), \varphi_{2}(u)\right)\right) \\
&= \pi_{1}\left(\varphi_{1}(u)\right) \vee \pi_{2}\left(\varphi_{2}(u)\right) \\
&= \pi_{1} \varphi_{1}^{-1}(u) \vee \pi_{2} \varphi_{2}^{-1}(u) \\
&= \lambda_{1}(u) \vee \lambda_{2}(u)=\left(\lambda_{1} \vee \lambda_{2}\right)(u) .
\end{aligned}
\end{aligned}
$$

So $\pi \theta^{-1}=\lambda_{1} \vee \lambda_{2}$. Hence $\lambda_{1} \vee \lambda_{2}$ is recognized by $\mathrm{M}_{1} \times \mathrm{M}_{2}$.
(2) The map $\phi: M_{1} \times M_{2} \rightarrow l$ defined by

$$
\phi\left(m_{1}, m_{2}\right)=\pi_{1}\left(m_{1}\right) \wedge \pi_{2}\left(m_{2}\right)
$$

is well defined. So ϕ is a l-fuzzy subset of $M_{1} \times M_{2}$. Thus

$$
\begin{aligned}
\phi \theta^{-1}(u) & =\phi(\theta(u)) \\
& =\phi\left(\left(\varphi_{1}(u), \varphi_{2}(u)\right)\right) \\
& =\pi_{1}\left(\varphi_{1}(u)\right) \wedge \pi_{2}\left(\varphi_{2}(u)\right) \\
& =\pi_{1} \varphi_{1}^{-1}(u) \wedge \pi_{2} \varphi_{2}^{-1}(u) \\
& =\lambda_{1}(u) \wedge \lambda_{2}(u)=\left(\lambda_{1} \wedge \lambda_{2}\right)(u),
\end{aligned}
$$

for all $u \in A^{*}$. Hence $\lambda_{1} \wedge \lambda_{2}=\phi \theta^{-1}$. Therefore $M_{1} \times M_{2}$ recognizes $\lambda_{1} \wedge \lambda_{2}$.
(3)Since λ is recognizable, there exist a finite monoid M, an onto homomorphism $\varphi: A^{*} \rightarrow M$ and a l-fuzzy subset π on M such that $\lambda=\pi \varphi^{-1}$ where $\left.\lambda(u)=\pi \varphi^{-1}\right)(u)$ $=\pi(\varphi(u))$. Define π_{1} from M to l by

$$
\begin{aligned}
\pi_{1}(m) & =\overline{\pi(m)} \\
\text { Then }\left(\pi_{1} \varphi^{-1}\right)(u) \quad & =\pi_{1}(\varphi(u)) \\
& =\overline{\pi(\varphi(u)}) \\
& =\overline{\left(\pi \varphi^{-1}\right)(u)} \\
& =\overline{\lambda(u)} \\
& =\bar{\lambda}(\mathrm{u})
\end{aligned}
$$

for all $u \in A^{*}$. Therefore $\pi_{1} \varphi^{-1}=\bar{\lambda}$. Thus $\bar{\lambda}$ is a recognizable language.

The class of all recognizable l-fuzzy languages over A is denoted by $l F\left(A^{*}\right)$. By Example 3.3, we have $\chi_{A^{*}} \in l F\left(A^{*}\right)$. Thus $l F\left(A^{*}\right)$ is a nonempty subclass of the class of all l-fuzzy languages. From Theorem 3.4,

E-ISSN: 2321-9637
 Available online at www.ijrat.org

it follows that $l F\left(A^{*}\right)$ is closed under join (V), meet (\wedge) and complementation. Moreover, we have the following.

Corollary 3.5. $l F\left(A^{*}\right)$ is a Boolean Algebra.
The following theorem gives a necessary and sufficient condition for the recognizability of l-fuzzy languages.

Theorem 3.6. Let λ be a l-fuzzy language over an alphabet A. Then a monoid M recognizes λ by a homomorphism $\varphi: A^{*} \rightarrow M$ if and only if ker φ saturates λ.

Proof. Assume that the monoid M recognizes λ by a homomorphism $\varphi: A^{*} \rightarrow M$. Then there exists a l-fuzzy subset π of M such that $\lambda=\pi \varphi^{-1}$ where $\lambda(u)=\left(\pi \varphi^{-1}\right)(u)$ $=\pi(\varphi(u)), u \in A^{*}$. Let u and v belongs to A^{*}. Then (u, v) $\in \operatorname{ker} \varphi$ if and only if $\varphi(u)=\varphi(v)$. Thus $\pi(\varphi(u))=$ $\pi(\varphi(v))$. That is, $\pi \varphi^{-1}(u)=\pi \varphi^{-1}(v)$. Hence $\lambda(u)=\lambda(v)$. Therefore $\operatorname{ker} \varphi$ saturates λ.

Conversely assume that $\varphi: A^{*} \rightarrow M$ is a homomorphism and $\operatorname{ker} \varphi$ saturates λ.
Define a function $\pi: \varphi\left(A^{*}\right) \rightarrow l$ by

$$
\pi(\varphi(u))=\lambda(u), \quad u \in A^{*}
$$

If $\varphi(u)=\varphi(v)$, then $(u, v) \in \operatorname{ker} \varphi$. Since $\operatorname{ker} \varphi$ saturates λ, we have $\lambda(u)=\lambda(v)$. So π is well defined. Let $\pi_{1}: M$ $\rightarrow l$ be a function such that $\left.\pi_{1}\right|_{\varphi\left(\mathrm{A}^{*}\right)}=\pi$. Then, for all $u \in A^{*}$, we have $\left(\pi_{1} \varphi\right)(u)=\pi_{1}(\varphi(u))=\pi(\varphi(u))=$ $\lambda(u)$. So $\lambda=\pi_{1} \varphi^{-1}$. Thus M recognizes λ.

4. SYNTACTIC CONGRUENCE

Let λ be a l-fuzzy language over A. Define a relation $\left(\sim_{\lambda}\right)$ on A^{*} as follows:

For $u, v \in A^{*}, u \sim_{\lambda} v$ if and only if

$$
\lambda(p u q)=\lambda(p v q), \text { for all } p, q \in A^{*} .
$$

Then the relation \sim_{λ} is a congruence on A^{*} called syntactic congruence of λ. The quotient monoid $A^{*} / \sim_{\lambda}=\operatorname{Syn}(\lambda)$ is called syntactic monoid of λ. The assignment $u \rightarrow[u]_{\sim \lambda}$ defines a homomorphism $\eta_{\lambda}: A^{*} \rightarrow \operatorname{Syn}(\lambda)$ called the syntactic homomorphism of λ.
Let $u, v \in A^{*}$ and let $(u, v) \in \operatorname{ker}\left(\eta_{\lambda}\right)$. Then $\eta_{\lambda}(u)=\eta_{\lambda}(v)$. That is, $[u]_{\sim \lambda}=[v]_{\sim \lambda}$. So $(u, v) \in \sim_{\lambda}$. Then by the definition of $\sim_{\lambda}, \lambda(u)=\lambda(v)$. Thus, $\operatorname{Syn}(\lambda)$ recognizes λ, by Theorem 3.6.

Theorem 4.1. Let λ be a l-fuzzy language over A. Then a monoid M recognizes λ if and only if $\operatorname{Syn}(\lambda)$ divides M.

Proof. Assume that the monoid M recognizes λ. Then there exist a homomorphism $\varphi: A^{*} \rightarrow M$ and a l-fuzzy subset π of M such that $\lambda=\pi \varphi^{-1}$ where $\lambda(u)=\pi(\varphi(u)), u$ $\in A^{*}$. Define a map ψ from $\varphi\left(A^{*}\right)$ to $\operatorname{Syn}(\lambda)$ by $\psi(\varphi(u))$
$=[u]_{\sim \lambda}$. Let $u, v \in A^{*}$ and let $\varphi(u)=\varphi(v)$. Then $(u, v) \in$ $\operatorname{ker} \varphi$. By Theorem 3.6, we have $\lambda(u)=\lambda(v)$. So $[u]_{\sim \lambda}=$ $[v]_{\sim \lambda}$. That is, $\psi(\varphi(u))=\psi(\varphi(v)), u, v \in A^{*}$. Thus ψ is well defined. Also, we have for all $u, v \in A^{*}$.

Clearly $\varphi(\varepsilon)$ is the identity in $\varphi\left(\mathrm{A}^{*}\right)$, where ε is the empty word. Then $\psi[\varphi(\varepsilon)]=[\varepsilon]_{\sim \lambda}$ which is the identity in $\operatorname{Syn}(\lambda)$. Thus ψ is a homomorphism from $\varphi\left(\mathrm{A}^{*}\right)$ into $\operatorname{Syn}(\lambda)$. Since $\varphi\left(A^{*}\right)$ is a submonoid of M, we see that $\operatorname{Syn}(\lambda)$ divides M .

Conversely assume that $\operatorname{Syn}(\lambda)$ divides a monoid M. We show that M recognizes λ. Since $\operatorname{Syn}(\lambda)$ divides M, there exist a submonoid M_{1} of M and an onto homomorphism ψ from M_{1} to $\operatorname{Syn}(\lambda)$. Define a map μ : $A^{*} \rightarrow M_{1}$ by $\mu(u)=m$ if $\eta_{\lambda}(u)=\psi(m)$, for all $u \in A^{*}$ and $m \in M_{1}$. Let $u_{1}, u_{2} \in A^{*}$ and let $\mu\left(u_{1}\right)=m_{1}$ and $\mu\left(u_{2}\right)=$ m_{2}. Let $u_{1}=u_{2}$, then $\eta_{\lambda}\left(u_{1}\right)=\eta_{\lambda}\left(u_{2}\right)$. Thus $\mu\left(u_{1}\right)=$ $\mu\left(u_{2}\right)$. Hence μ is well defined. We have,

$$
\begin{aligned}
& \eta_{\lambda}\left(u_{1} u_{2}\right)=\eta_{\lambda}\left(u_{1}\right) \eta_{\lambda}\left(u_{2}\right) \\
& =\psi\left(m_{1}\right) \psi\left(m_{2}\right) \\
& =\psi\left(m_{1} m_{2}\right) .
\end{aligned}
$$

Thus $\mu\left(u_{1} u_{2}\right)=m_{1} m_{2}=\mu\left(u_{1}\right) \mu\left(u_{2}\right)$. Hence μ is a homomorphism from $A^{*} \rightarrow M_{1}$ and $\eta_{\lambda}=\psi \mu$. Since M_{1} is a submonoid of M, there exists a homomorphism φ $: A^{*} \rightarrow M$.

Since $\operatorname{Syn}(\lambda)$ recognizes λ, there exists a l-fuzzy subset π_{1} of $\operatorname{Syn}(\lambda)$ such that $\lambda=\pi_{1} \eta_{\lambda}{ }^{-1}$ where $\lambda(u)$ $=\pi_{1}\left(\eta_{\lambda}(u)\right)$. Define a map π from M to l by $\pi(m)=$ $\left(\pi_{1} \psi^{-1}\right)(u)$ where $\left(\pi_{1} \psi^{-1}\right)(u)=\pi_{1}(\psi(u))$, if $m \in M_{1}$. If $m \in M \backslash M_{1}$, then π is defined arbitrarily. Since ψ and π_{1} are well defined, π is well defined. For $u \in A^{*}$, we have

$$
\begin{aligned}
\pi \varphi^{-1}(\mathrm{u}) & =\pi(\varphi(u))=\left(\pi_{1} \psi^{-1}\right)(\varphi(u)) \\
& =\pi_{1}(\psi(\varphi(\mathrm{u})))=\pi_{1}(\psi(\mu(\mathrm{u})) \\
& =\pi_{1}\left(\eta_{\lambda}(\mathbf{u})\right) \\
& =\left(\pi_{1} \eta_{\lambda}{ }^{-1}\right)(\mathbf{u})=\lambda(\mathrm{u})
\end{aligned}
$$

Thus $\lambda=\pi \varphi^{-1}$. Hence λ is recognizable.
Corollary 4.2. Syntactic monoid Syn (λ) is the minimal monoid recognizing the fuzzy language λ.

It is well known that every monoid is the syntactic monoid of a fuzzy language (cf, [8]). Now we prove the case for l-fuzzy languages.

Theorem 4.3. For every monoid M with $|M| \leq|l|$, there exist a l-fuzzy language λ such that M is the syntactic monoid of λ.

Proof. Let M be a monoid. Then there exist an alphabet A and an epimorphism $\varphi: A^{*} \rightarrow M$. Since $\operatorname{ker} \varphi$ is a congruence on $A^{*}, \operatorname{ker} \varphi$ partitions A^{*} into different equivalence classes (languages). Let $\left\{L_{i}\right\}_{i \in I}$ be

$$
\begin{aligned}
\psi(\varphi(u) \varphi(v)) & =\psi(\varphi(u v))=[u v]_{\sim \lambda} \\
& =[u] \sim \lambda[v] \sim \lambda \\
& =\psi(\varphi(u)) \psi(\varphi(v)),
\end{aligned}
$$

languages in the partition determined by $\operatorname{ker} \varphi$. Let $\left\{l_{i}\right\}_{i \in I}$ be pairwise distinct elements of the lattice l. Define a l-fuzzy language $\lambda: A^{*} \rightarrow l$ by

$$
\lambda(u)=l_{i} \text {, if } u \in L_{i}
$$

A map $\phi: \operatorname{Syn}(\lambda) \rightarrow M$ is defined by $\phi\left(\eta_{\lambda}(u)\right)=\varphi(u), u$ $\in A^{*}$. Let $u, v \in A^{*}$ and $\eta_{\lambda}(u)=\eta_{\lambda}(v)$. Then $(u, v) \in \sim_{\lambda}$. So $\lambda(u)=\lambda(v)$. Thus u and v belongs to some L_{i}. That is, $(u, v) \in \operatorname{ker} \varphi$. Hence we get, $\varphi(u)=\varphi(v)$. Therefore ϕ is well defined. We have

$$
\begin{aligned}
\phi\left(\eta_{\lambda}(u) \eta_{\lambda}(v)\right) & =\phi\left(\eta_{\lambda}(u v)\right) \\
& =\varphi(u v) \\
& =\varphi(u) \varphi(v) \\
& =\phi\left(\eta_{\lambda}(u)\right) \phi\left(\eta_{\lambda}(v)\right)
\end{aligned}
$$

Also $\phi\left(\eta_{\lambda}(u)\right)=\phi\left(\eta_{\lambda}(v)\right)$ if and only if $\varphi(u)=\varphi(v)$. So $(u, v) \in \operatorname{ker} \varphi$. Hence $(u, v) \in L_{i}$ for some $i \in I$. Thus $\lambda(u)$ $=\lambda(v)$. So $(u, v) \in \sim_{\lambda}$. That is, $[u]_{\sim \lambda}=[v]_{\sim \lambda}$. Hence ϕ is one to one.

Let $m \in M$. Since φ is onto, there exists some u $\in A^{*}$ such that $\varphi(u)=m$. So $\phi\left(\eta_{\lambda}(u)\right)=\varphi(u)=m$. Thus ϕ is an isomorphism from $\operatorname{Syn}(\lambda)$ onto M.

Example 4.4. Let $l=(\{\emptyset,\{c\},\{d\},\{c, d\}\}, \cap, \cup)$ be the complete complemented distributive lattice and the monoid be $M=\left(Z_{3},+_{3}\right)$. Here $|M| \leqslant|l|$. Let $A=$ $\{a, b\}$.Then there exists a l-fuzzy language $\lambda: A^{*} \rightarrow l$ defined by

$$
\lambda(u)=\left\{\begin{array}{lll}
\varnothing & \text { if } & |u| \equiv 0 \bmod 3 \\
\{c\} & \text { if } & |u| \equiv 1 \bmod 3 \\
\{d\} & \text { if } & |u| \equiv 2 \bmod 3
\end{array}\right.
$$

Here $\operatorname{Syn}(\lambda)$ is isomorphic to Z_{3}.
The following theorem presents the MyhillNerode theorem for l-fuzzy languages.

Theorem 4.5. Let λ be a l-fuzzy language over an alphabet A. Then the following statements are equivalent
(1) λ is recognizable.
(2) \sim_{λ} has finite index.

Proof. (1) Assume that λ is recognizable. So λ is recognized by a finite monoid M. Then by Theorem 4.1, $\operatorname{Syn}(\lambda)$ divides M. That is, $\operatorname{Syn}(\lambda)$ is a homomorphic image of a submonoid of M. Thus $\operatorname{Syn}(\lambda)$ is finite. Hence \sim_{λ} has finite index.
(2) Assume that \sim_{λ} has finite index. So $\operatorname{Syn}(\lambda)$ is finite. Define a $\operatorname{map} \pi^{\prime}: \operatorname{Syn}(\lambda) \rightarrow l$ by $\pi^{\prime}\left(\eta_{\lambda}(u)\right)=\lambda(u), u \in A^{*}$. Let $u_{1}, u_{2} \in A^{*}$, and $\eta_{\lambda}\left(u_{1}\right)=\eta_{\lambda}\left(u_{2}\right)$. Then $\left[u_{1}\right]_{\sim \lambda}=$ $\left[u_{2}\right]_{\sim \lambda}$. Thus $u_{1} \sim_{\lambda} u_{2}$. Hence $\lambda\left(u_{1}\right)=\lambda\left(u_{2}\right)$. Thus π^{\prime} is well defined and $\lambda(u)=\pi^{\prime}\left(\eta_{\lambda}(u)\right)=\left(\pi^{\prime} \eta_{\lambda}{ }^{-1}\right)(u)$ for all $u \in A^{*}$. Thus $\lambda=\pi^{\prime} \eta_{\lambda}{ }^{-1}$ and $\operatorname{Syn}(\lambda)$ recognizes λ by the syntactic homomorphism. Therefore λ is recognizable.

REFERENCES

[1] S.Eilenberge, Automata, Languages and Machines,Vol. A, Academic Press, London 1974.
[2] S.Eilenberge, Automata, Languages and Machines,Vol. B, Academic Press, London 1976.
[3] G.Gratzer, Lattice Theory; Foundation, Springer Basel AG, 2011.
[4] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1976. Applications, John Wiley, NewYork, 1979.
E. T. Lee, Note on Fuzzy Languages, Information Science, No. 1, 1969, 421-434.
[7] J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages; Theory andApplications, Chapman \& Hall CRC, 2002
[8] T.Petkovic, Varieties of Fuzzy Languages, Proc. 1st Inernational Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Thessaloniki, 2005.
[9] J. E. Pin, Varieties of Formal Languages, North Oxford Academic, 1986.
[10] Rakesh dube, Adesh Pandey, Retu Gupta, Discrete Structures and Automata Theory, Narosa Publishing House, New Delhi, 2007.
[11] W.G.Wie, On Generalisation of Adaptive Algorithms and Applications of the Fuzzy sets concepts f pattern classification, Ph.D Thesis, Indiana 1967.
[12] L. A. Zadeh, Fuzzy Sets, Information and Control, No. 8, 1965, 338-353.

