On Monoid Recognizable *l*-Fuzzy Languages

Ajitha Kumari K¹, Archana V P²

Department of Mathematics, B.J.M.Govt: College, Chavara, Kollam.691583¹, Department of Mathematics, M.M.N.S.S. College, Kottiyam² Email:ambiliragamalika@gmail.com¹, rajesharchana@gmail.com²

Abstract-Here we show that the class of monoid recognizable *l*-fuzzy languages is closed under Boolean operations. Also we prove that the syntactic monoid of a recognizable *l*-fuzzy language is finite and every finite monoid is a syntactic monoid of a recognizable *l*-fuzzy language.

Index Terms: *l*-fuzzy languages; Syntactic congruence; Syntactic monoid.

1. INTRODUCTION

Zadeh [12] introduced the notion of a fuzzy subset of an ordinary set as a method of representing uncertainty. Later it came as a useful tool for describing real-life problems. Zadeh and Lee [6] generalized the classical notion of languages to the concept of fuzzy languages in 1969. A detailed account of the latest developments in the theory of automata and fuzzy languages was given in [7]. In [8] Petkovic introduced the notion of syntactic monoid of a fuzzy language and proved that every finite monoid is the syntactic monoid of a recognizable fuzzy language.

In this paper we discussed monoid recognizability of *l*-fuzzy languages. We introduce the concept of syntactic monoid of a *l*-fuzzy language and studied its properties. Also we prove that every finite monoid is a syntactic monoid of a recognizable *l*-fuzzy language.

2. PRELIMINARIES

In this section we recall the basic definitions, results and notations that will be used in the sequel. All undefined terms are as in [7, 9]. A lattice is a partially ordered set in which every subset $\{a, b\}$ consisting of two element has a least upper bound $(a \lor b)$ and a greatest lower bound $(a \land b)$. A lattice *l* is said to be bounded if it has a greatest element 1 and a least element 0. A lattice *l* is said to be distributive if for any element *a*, *b* and *c* of *l*, we have the following distributive properties.

(1) $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$.

(2) $a \lor (b \land c) = (a \lor b) \land (a \lor c).$

Let *l* be a bounded lattice with greatest element 1 and least element 0 and let $a \in l$. An element $b \in l$ is

called complement of *a* if $a \lor b = 1$ and $a \land b = 0$. Complements need not be unique. But if *l* is a bounded distributive lattice then complements are unique if they exist (cf. [10]). A lattice *l* is called complemented if it is bounded and if every element in *l* has a complement. A lattice *l* is called a complete lattice if every nonempty subset of *l* has greatest lower bound and least upper bound in *l*. Thus every finite lattice is complete.

A semigroup consists of a nonempty set M on which an associative binary operation \cdot is defined and is denoted by (M, \cdot) . If there exists an element 1 satisfying $m \cdot 1 = m = 1 \cdot m$ for all $m \in M$, then M is called a monoid (semigroup with identity). Let (M, \cdot) be a monoid, then a nonempty subset M_1 of M is called a submonoid of M if it is closed with respect to the induced binary operation.

Let *A* be a nonempty finite set called an alphabet. Elements of *A* are called letters. A finite sequence of letters of *A* is called a word. The length of the word *w*, in symbols |w|, is the number of letters of *A* occurring in *w*. A word of length zero is called empty word and is denoted by ε . *A*⁺denotes the set of all nonempty words over an alphabet *A* and $A^* = A^+ \cup {\varepsilon}$ is a monoid under the operation concatenation, called free monoid over *A*. A subset of A^* is called the language *L* over an alphabet *A*.

Let $L \subseteq A^*$. Then *L* is recognizable if there exists a finite monoid *M* and a homomorphism $\phi: A^* \to M$ such that $L = \phi^{-1}(P)$, where $P \subseteq M$. Also we say that *M* recognizes *L*.

Let $L \subseteq A^*$. For $u, v \in A^*$, we define a relation P_L by

$$uP_L v$$
 if $xuy \in L \Leftrightarrow xvy \in L$,

for all $x, y \in A^*$. Then P_L is a congruence, called the syntactic congruence. The quotient monoid $A^* / P_L = M(L)$ is called the syntactic monoid and the canonical homomorphism $\eta_L: \underline{A^*} \to M(L)$ is called the syntactic morphism of *L*.

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

3. I-FUZZY LANGUAGES

Let l be a complete complemented distributive lattice.

Any function λ from A^* into l is called a *l*-fuzzylanguage over the alphabet A.

Example3.1. Let $l = (\{\{c\}, \{d\}, \{c,d\}, \emptyset\}, \cup, \cap)$ and let $A = \{a,b\}$ be a complete complemented distributive lattice on the set $\{c,d\}$. The function $\lambda : A^* \rightarrow l$ defined by

$$\lambda(u) = \begin{cases} \{c\} & \text{if } u \in aA^* \\ \{d\} & \text{if } u \in bA^* \\ \text{is a } l\text{-fuzzy language over } A. \end{cases}$$
(ii)

Definition 3.2. Let λ be a *l*-fuzzy language over an alphabet A. Then λ is recognizable if there exist a finite monoid M, a homomorphism $\varphi : A^* \to M$ and a *l*-fuzzy subset $\pi : M \to l$ such that $\lambda = \pi \varphi^{-1}$ where $\pi \varphi^{-1}(u) = \pi(\varphi(u)), u \in A^*$. We also say that the monoid M recognizes λ by a morphism φ .

Example 3.3. $\chi_A * is$ a recognizable *l*-fuzzy language.

Now we define the complement $\overline{\lambda}$ of a *l*-fuzzy language λ as

 $\overline{\lambda}(\mathbf{u}) = \overline{\lambda(u)}$

where $\overline{\lambda(u)}$ denotes the complement of $\lambda(u)$ in *l*.

For *l*-fuzzy languages λ_1 , λ_2 over *A*, their join(V) and meet (Λ) are defined by

$$(\lambda_1 \vee \lambda_2)(u) = \lambda_1(u) \vee \lambda_2(u)$$

and

$$(\lambda_1 \wedge \lambda_2)(u) = \lambda_1(u) \wedge \lambda_2(u).$$

Theorem 3.4. Let λ , λ_1 , λ_2 be recognizable *l*-fuzzy languages over an alphabet A. Then we have the following

(1) λ₁ Vλ₂ is recognizable.
(2) λ₁ Λλ₂ is recognizable.
(3) λ̄ is recognizable.

Proof. (1) Since λ_1 and λ_2 are recognizable, there exist finite monoids M_1 and M_2 , homomorphisms $\varphi_1 : A^* \rightarrow M_1$ and $\varphi_2 : A^* \rightarrow M_2$ and *l*-fuzzy subsets $\pi_1 : M_1 \rightarrow l$ and $\pi_2 : M_2 \rightarrow l$ such that $\lambda_1 = \pi_1 \varphi_1^{-1}$ and $\lambda_2 = \pi_2 \varphi_2^{-1}$. Define a map $\theta : A^* \rightarrow M_1 \times M_2$ by

$$\theta(u) = (\varphi_1(u), \varphi_2(u)).$$

For u_{1} , $u_{2} \in A^{*}$, We have

So θ is a homomorphism. Define $\pi : M_1 \times M_2 \rightarrow l$ by $\pi(m_1, m_2) = \pi_1(m_1) \vee \pi_2(m_2)$.

Since π is well defined, π is a *l*-fuzzy subset of $M_1^{(u_1,u_2)}$, $\varphi_2^{(u_1,u_2)}$, $\varphi_2^{(u_1,u_2)}$) For $u \in A^*$, we have = $(\varphi_1(u_1)\varphi_1(u_2), \varphi_2(u_1)\varphi_2(u_2))$ = $(\varphi_1(u_1), \varphi_2(u_1))(\varphi_1(u_2), \varphi_2(u_2))$ $\pi\theta^{-1}(u)$ = $\pi(\mathcal{H}(u)) \mathcal{O}(\mathcal{O}(\mathcal{U}), \varphi_2(u)))$ $\pi_1(\varphi_1(u)) \vee \pi_2(\varphi_2(u))$ = $\pi_1 \varphi_1^{-1}(u) \vee \pi_2 \varphi_2^{-1}(u)$ _ $\lambda_1(u) \vee \lambda_2(u) = (\lambda_1 \vee \lambda_2)(u).$ = So $\pi \theta^{-1} = \lambda_1 \vee \lambda_2$. Hence $\lambda_1 \vee \lambda_2$ is recognized by $M_1 \times M_2$.

(2) The map $\phi: M_1 \times M_2 \rightarrow l$ defined by

$$\phi(m_1, m_2) = \pi_1(m_1) \wedge \pi_2(m_2)$$

is well defined. So ϕ is a *l*-fuzzy subset of $M_1 \times M_2$. Thus

$$\begin{split} \phi \theta^{-1}(u) &= \phi(\theta(u)) \\ &= \phi((\varphi_1(u), \varphi_2(u))) \\ &= \pi_1(\varphi_1(u)) \wedge \pi_2(\varphi_2(u)) \\ &= \pi_1 \varphi_1^{-1}(u) \wedge \pi_2 \varphi_2^{-1}(u) \\ &= \lambda_1(u) \wedge \lambda_2(u) = (\lambda_1 \wedge \lambda_2)(u), \end{split}$$

for all $u \in A^*$. Hence $\lambda_1 \wedge \lambda_2 = \phi \theta^{-1}$. Therefore $M_1 \times M_2$ recognizes $\lambda_1 \wedge \lambda_2$.

(3)Since λ is recognizable, there exist a finite monoid M, an onto homomorphism $\varphi : A^* \to M$ and a *l*-fuzzy subset π on M such that $\lambda = \pi \varphi^{-1}$ where $\lambda(u) = \pi \varphi^{-1}(u) = \pi(\varphi(u))$. Define π_1 from M to l by

$$\pi_1(m) = \overline{\pi(m)}$$
Then $(\pi_1 \varphi^{-1})(u) = \pi_1(\varphi(u))$

$$= \overline{\pi(\varphi(u))}$$

$$= \overline{\pi(\varphi^{-1})(u)}$$

$$= \overline{\lambda(u)}$$

$$= \overline{\lambda}(u)$$

for all $u \in A^*$. Therefore $\pi_1 \varphi^{-1} = \overline{\lambda}$. Thus $\overline{\lambda}$ is a recognizable language.

The class of all recognizable *l*-fuzzy languages over *A* is denoted by $lF(A^*)$. By Example 3.3, we have $\chi_{A^*} \in lF(A^*)$. Thus $lF(A^*)$ is a nonempty subclass of the class of all *l*-fuzzy languages. From Theorem 3.4, it follows that $lF(A^*)$ is closed under join(V), meet(Λ) and complementation. Moreover, we have the following.

Corollary 3.5. $lF(A^*)$ is a Boolean Algebra.

The following theorem gives a necessary and sufficient condition for the recognizability of *l*-fuzzy languages.

Theorem 3.6. Let λ be a *l*-fuzzy language over an alphabet A. Then a monoid M recognizes λ by a homomorphism $\varphi : A^* \to M$ if and only if ker φ saturates λ .

Proof. Assume that the monoid *M* recognizes λ by a homomorphism $\varphi : A^* \to M$. Then there exists a *l*-fuzzy subset π of *M* such that $\lambda = \pi \varphi^{-1}$ where $\lambda(u) = (\pi \varphi^{-1})(u) = \pi(\varphi(u)), u \in A^*$. Let *u* and *v* belongs to A^* . Then $(u, v) \in \text{ker}\varphi$ if and only if $\varphi(u) = \varphi(v)$. Thus $\pi(\varphi(u)) = \pi(\varphi(v))$. That is, $\pi \varphi^{-1}(u) = \pi \varphi^{-1}(v)$. Hence $\lambda(u) = \lambda(v)$. Therefore ker φ saturates λ .

Conversely assume that $\varphi : A^* \to M$ is a homomorphism and ker φ saturates λ . Define a function $\pi : \varphi(A^*) \to l$ by

$$\pi(\varphi(u)) = \lambda(u), \quad u \in A^*$$

If $\varphi(u) = \varphi(v)$, then $(u,v) \in \text{ker}\varphi$. Since ker φ saturates λ , we have $\lambda(u) = \lambda(v)$. So π is well defined. Let $\pi_1 : M \rightarrow l$ be a function such that $\pi_1|_{\varphi(A^*)} = \pi$. Then, for all $u \in A^*$, we have $(\pi_1\varphi)(u) = \pi_1(\varphi(u)) = \pi(\varphi(u)) = \lambda(u)$. So $\lambda = \pi_1\varphi^{-1}$. Thus M recognizes λ .

4. SYNTACTIC CONGRUENCE

Let λ be a *l*-fuzzy language over *A*. Define a relation (\sim_{λ}) on *A*^{*} as follows:

For $u, v \in A^*$, $u \sim_{\lambda} v$ if and only if $\lambda(puq) = \lambda(pvq)$, for all $p, q \in A^*$.

Then the relation \sim_{λ} is a congruence on A^* called syntactic congruence of λ . The quotient monoid $A^*/\sim_{\lambda} = \text{Syn}(\lambda)$ is called syntactic monoid of λ . The assignment $u \rightarrow [u]_{\sim_{\lambda}}$ defines a homomorphism $\eta_{\lambda}: A^* \rightarrow \text{Syn}(\lambda)$ called the syntactic homomorphism of λ .

Let $u, v \in A^*$ and let $(u, v) \in \ker(\eta_{\lambda})$. Then $\eta_{\lambda}(u) = \eta_{\lambda}(v)$. That is, $[u]_{\lambda} = [v]_{\lambda}$. So $(u, v) \in \lambda$. Then by the definition of $\lambda_{\lambda}(u) = \lambda(v)$. Thus, $\operatorname{Syn}(\lambda)$ recognizes λ , by Theorem 3.6.

Theorem 4.1. Let λ be a *l*-fuzzy language over A. Then a monoid M recognizes λ if and only if $Syn(\lambda)$ divides M.

Proof. Assume that the monoid *M* recognizes λ . Then there exist a homomorphism $\varphi : A^* \to M$ and a *l*-fuzzy subset π of *M* such that $\lambda = \pi \varphi^{-1}$ where $\lambda(u) = \pi(\varphi(u)), u \in A^*$. Define a map ψ from $\varphi(A^*)$ to Syn(λ) by $\psi(\varphi(u))$

= $[u]_{\sim\lambda}$. Let $u, v \in A^*$ and let $\varphi(u) = \varphi(v)$. Then $(u,v) \in \ker \varphi$. By Theorem 3.6, we have $\lambda(u) = \lambda(v)$. So $[u]_{\sim\lambda} = [v]_{\sim\lambda}$. That is, $\psi(\varphi(u)) = \psi(\varphi(v))$, $u, v \in A^*$. Thus ψ is well defined. Also, we have for all $u, v \in A^*$.

Clearly $\varphi(\varepsilon)$ is the identity in $\varphi(A^*)$, where ε is the empty word. Then $\psi[\varphi(\varepsilon)] = [\varepsilon]_{\lambda}$ which is the identity in Syn(λ). Thus ψ is a homomorphism from $\varphi(A^*)$ into Syn(λ). Since $\varphi(A^*)$ is a submonoid of M, we see that Syn(λ) divides M.

Conversely assume that $\text{Syn}(\lambda)$ divides a monoid M. We show that M recognizes λ . Since $\text{Syn}(\lambda)$ divides M, there exist a submonoid M_1 of M and an onto homomorphism ψ from M_1 to $\text{Syn}(\lambda)$. Define a map μ : $A^* \rightarrow M_1$ by $\mu(u) = m$ if $\eta_{\lambda}(u) = \psi(m)$, for all $u \in A^*$ and $m \in M_1$. Let $u_1, u_2 \in A^*$ and let $\mu(u_1) = m_1$ and $\mu(u_2) = m_2$. Let $u_1 = u_2$, then $\eta_{\lambda}(u_1) = \eta_{\lambda}(u_2)$. Thus $\mu(u_1) = \mu(u_2)$. Hence μ is well defined. We have,

$$\eta_{\lambda}(u_1u_2) = \eta_{\lambda}(u_1)\eta_{\lambda}(u_2)$$
$$= \psi(m_1)\psi(m_2)$$
$$= \psi(m_1m_2).$$

Thus $\mu(u_1u_2) = m_1m_2 = \mu(u_1)\mu(u_2)$. Hence μ is a homomorphism from $A^* \rightarrow M_1$ and $\eta_{\lambda} = \psi \mu$. Since M_1 is a submonoid of M, there exists a homomorphism φ : $A^* \rightarrow M$.

Since Syn(λ) recognizes λ , there exists a *l*-fuzzy subset π_1 of Syn(λ) such that $\lambda = \pi_1 \eta_{\lambda}^{-1}$ where $\lambda(u) = \pi_1(\eta_{\lambda}(u))$. Define a map π from M to l by $\pi(m) = (\pi_1 \psi^{-1})(u)$ where $(\pi_1 \psi^{-1})(u) = \pi_1(\psi(u))$, if $m \in M_1$. If $m \in M \setminus M_1$, then π is defined arbitrarily. Since ψ and π_1 are well defined, π is well defined. For $u \in A^*$, we have

$$\pi \varphi^{-1}(\mathbf{u}) = \pi(\varphi(u)) = (\pi_1 \psi^{-1})(\varphi(u))$$
$$= \pi_1(\psi(\varphi(u))) = \pi_1(\psi(\mu(u)))$$
$$= \pi_1(\eta_\lambda(u))$$
$$= (\pi_1 \eta_\lambda^{-1})(\mathbf{u}) = \lambda(\mathbf{u})$$
Thus $\lambda = \pi \varphi^{-1}$. Hence λ is recognizable.

Corollary 4.2. Syntactic monoid $Syn(\lambda)$ is the minimal monoid recognizing the fuzzy language λ .

It is well known that every monoid is the syntactic monoid of a fuzzy language (cf, [8]). Now we prove the case for *l*-fuzzy languages.

Theorem 4.3. For every monoid M with $|M| \le |l|$, there exist a *l*-fuzzy language λ such that M is the syntactic monoid of λ .

Proof. Let *M* be a monoid. Then there exist an alphabet *A* and an epimorphism $\varphi : A^* \to M$. Since ker φ is a congruence on A^* , ker φ partitions A^* into different equivalence classes (languages). Let $\{L_i\}_{i \in I}$ be

$$\psi(\varphi(u)\varphi(v)) = \psi(\varphi(uv)) = [uv]_{\sim\lambda}$$
$$= [u] \sim \lambda [v] \sim \lambda$$
$$= \psi(\varphi(u))\psi(\varphi(v)), \qquad 2412$$

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

languages in the partition determined by ker φ . Let $\{l_i\}_{i \in I}$ be pairwise distinct elements of the lattice *l*. Define a *l*-fuzzy language $\lambda : A^* \rightarrow l$ by

$$\lambda(u) = l_i$$
, if $u \in L_i$

A map ϕ :Syn $(\lambda) \to M$ is defined by $\phi(\eta_{\lambda}(u)) = \varphi(u)$, $u \in A^*$. Let $u, v \in A^*$ and $\eta_{\lambda}(u) = \eta_{\lambda}(v)$. Then $(u, v) \in \sim_{\lambda}$. So $\lambda(u) = \lambda(v)$. Thus u and v belongs to some L_i . That is, $(u, v) \in \ker \varphi$. Hence we get, $\varphi(u) = \varphi(v)$. Therefore ϕ is well defined. We have

$$\begin{aligned} \phi(\eta_{\lambda}(u)\eta_{\lambda}(v)) &= \phi(\eta_{\lambda}(uv)) \\ &= \varphi(uv) \\ &= \varphi(u)\varphi(v) \\ &= \phi(\eta_{\lambda}(u))\phi(\eta_{\lambda}(v)) \end{aligned}$$

Also $\phi(\eta_{\lambda}(u)) = \phi(\eta_{\lambda}(v))$ if and only if $\phi(u) = \phi(v)$. So $(u,v) \in \ker \phi$. Hence $(u,v) \in L_i$ for some $i \in I$. Thus $\lambda(u) = \lambda(v)$. So $(u,v) \in \sim_{\lambda}$. That is, $[u]_{\sim_{\lambda}} = [v]_{\sim_{\lambda}}$. Hence ϕ is one to one.

Let $m \in M$. Since φ is onto, there exists some $u \in A^*$ such that $\varphi(u) = m$. So $\phi(\eta_\lambda(u)) = \varphi(u) = m$. Thus ϕ is an isomorphism from Syn(λ) onto M.

Example 4.4. Let $l = (\{\emptyset, \{c\}, \{d\}, \{c,d\}\}, \cap, \cup)$ be the complete complemented distributive lattice and the monoid be $M = (Z_{3}, +_{3})$. Here |M| < |l|. Let $A = \{a,b\}$. Then there exists a *l*-fuzzy language $\lambda : A^* \rightarrow l$ defined by

 $\lambda(u) = \begin{cases} \emptyset & \text{if } |u| \equiv 0 \mod 3\\ \{c\} & \text{if } |u| \equiv 1 \mod 3\\ \{d\} & \text{if } |u| \equiv 2 \mod 3. \end{cases}$ Here $Syn(\lambda)$ is isomorphic to Z_3 .

The following theorem presents the Myhill-Nerode theorem for *l*-fuzzy languages.

Theorem 4.5. Let λ be a l-fuzzy language over an alphabet A. Then the following statements are equivalent (1) λ is recognizable. (2) \sim_{λ} has finite index.

Proof. (1) Assume that λ is recognizable. So λ is recognized by a finite monoid M. Then by Theorem 4.1, Syn(λ) divides M. That is, Syn(λ) is a homomorphic image of a submonoid of M. Thus Syn(λ) is finite. Hence \sim_{λ} has finite index.

(2) Assume that \sim_{λ} has finite index. So Syn(λ) is finite. Define a map π' :Syn(λ) $\rightarrow l$ by $\pi'(\eta_{\lambda}(u)) = \lambda(u), u \in A^*$. Let $u_1, u_2 \in A^*$, and $\eta_{\lambda}(u_1) = \eta_{\lambda}(u_2)$. Then $[u_1]_{\sim_{\lambda}} = [u_2]_{\sim_{\lambda}}$. Thus $u_1 \sim_{\lambda} u_2$. Hence $\lambda(u_1) = \lambda(u_2)$. Thus π' is well defined and $\lambda(u) = \pi'(\eta_{\lambda}(u)) = (\pi'\eta_{\lambda}^{-1})(u)$ for all $u \in A^*$. Thus $\lambda = \pi'\eta_{\lambda}^{-1}$ and Syn(λ) recognizes λ by the syntactic homomorphism. Therefore λ is recognizable.

REFERENCES

- [1] S.Eilenberge, Automata, Languages and Machines, Vol. A, Academic Press, London 1974.
- [2] S.Eilenberge, Automata, Languages and Machines, Vol. B, Academic Press, London 1976.
- [3] G.Gratzer, Lattice Theory; Foundation, Springer Basel AG, 2011.
- [4] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1976.
- [5] G. Lallement, Semigroup and Combinatorial Applications, John Wiley, NewYork, 1979.
- [6] E. T. Lee, Note on Fuzzy Languages, Information Science, No. 1, 1969, 421–434.
- [7] J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages; Theory andApplications, Chapman & Hall CRC, 2002
- [8] T.Petkovic, Varieties of Fuzzy Languages, Proc. 1st Inernational Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Thessaloniki, 2005.
- [9] J. E. Pin, Varieties of Formal Languages, North Oxford Academic, 1986.
- [10] Rakesh dube, Adesh Pandey, Retu Gupta, Discrete Structures and Automata Theory, Narosa Publishing House, New Delhi, 2007.
- [11] W.G.Wie, On Generalisation of Adaptive Algorithms and Applications of the Fuzzy sets concepts f pattern classification, Ph.D Thesis, Indiana 1967.
- [12] L. A. Zadeh, Fuzzy Sets, Information and Control, No. 8, 1965, 338–353.